Copied to
clipboard

G = C334C16order 432 = 24·33

2nd semidirect product of C33 and C16 acting via C16/C4=C4

metabelian, soluble, monomial, A-group

Aliases: C334C16, C324(C3⋊C16), C3⋊(C322C16), C6.(C322C8), C2.(C334C8), (C32×C6).4C8, C12.2(C32⋊C4), (C32×C12).3C4, C324C8.4S3, C4.2(C33⋊C4), (C3×C12).12Dic3, (C3×C6).6(C3⋊C8), (C3×C324C8).6C2, SmallGroup(432,413)

Series: Derived Chief Lower central Upper central

C1C33 — C334C16
C1C3C33C32×C6C32×C12C3×C324C8 — C334C16
C33 — C334C16
C1C4

Generators and relations for C334C16
 G = < a,b,c,d | a3=b3=c3=d16=1, ab=ba, ac=ca, dad-1=ab-1, bc=cb, dbd-1=a-1b-1, dcd-1=c-1 >

2C3
2C3
4C3
4C3
2C6
2C6
4C6
4C6
2C32
2C32
4C32
4C32
9C8
2C12
2C12
4C12
4C12
2C3×C6
2C3×C6
4C3×C6
4C3×C6
27C16
6C3⋊C8
6C3⋊C8
9C24
2C3×C12
2C3×C12
4C3×C12
4C3×C12
9C3⋊C16
6C3×C3⋊C8
6C3×C3⋊C8
3C322C16

Smallest permutation representation of C334C16
On 48 points
Generators in S48
(1 18 46)(2 19 47)(3 48 20)(4 33 21)(5 22 34)(6 23 35)(7 36 24)(8 37 25)(9 26 38)(10 27 39)(11 40 28)(12 41 29)(13 30 42)(14 31 43)(15 44 32)(16 45 17)
(2 47 19)(4 21 33)(6 35 23)(8 25 37)(10 39 27)(12 29 41)(14 43 31)(16 17 45)
(1 46 18)(2 19 47)(3 48 20)(4 21 33)(5 34 22)(6 23 35)(7 36 24)(8 25 37)(9 38 26)(10 27 39)(11 40 28)(12 29 41)(13 42 30)(14 31 43)(15 44 32)(16 17 45)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,18,46)(2,19,47)(3,48,20)(4,33,21)(5,22,34)(6,23,35)(7,36,24)(8,37,25)(9,26,38)(10,27,39)(11,40,28)(12,41,29)(13,30,42)(14,31,43)(15,44,32)(16,45,17), (2,47,19)(4,21,33)(6,35,23)(8,25,37)(10,39,27)(12,29,41)(14,43,31)(16,17,45), (1,46,18)(2,19,47)(3,48,20)(4,21,33)(5,34,22)(6,23,35)(7,36,24)(8,25,37)(9,38,26)(10,27,39)(11,40,28)(12,29,41)(13,42,30)(14,31,43)(15,44,32)(16,17,45), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)>;

G:=Group( (1,18,46)(2,19,47)(3,48,20)(4,33,21)(5,22,34)(6,23,35)(7,36,24)(8,37,25)(9,26,38)(10,27,39)(11,40,28)(12,41,29)(13,30,42)(14,31,43)(15,44,32)(16,45,17), (2,47,19)(4,21,33)(6,35,23)(8,25,37)(10,39,27)(12,29,41)(14,43,31)(16,17,45), (1,46,18)(2,19,47)(3,48,20)(4,21,33)(5,34,22)(6,23,35)(7,36,24)(8,25,37)(9,38,26)(10,27,39)(11,40,28)(12,29,41)(13,42,30)(14,31,43)(15,44,32)(16,17,45), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,18,46),(2,19,47),(3,48,20),(4,33,21),(5,22,34),(6,23,35),(7,36,24),(8,37,25),(9,26,38),(10,27,39),(11,40,28),(12,41,29),(13,30,42),(14,31,43),(15,44,32),(16,45,17)], [(2,47,19),(4,21,33),(6,35,23),(8,25,37),(10,39,27),(12,29,41),(14,43,31),(16,17,45)], [(1,46,18),(2,19,47),(3,48,20),(4,21,33),(5,34,22),(6,23,35),(7,36,24),(8,25,37),(9,38,26),(10,27,39),(11,40,28),(12,29,41),(13,42,30),(14,31,43),(15,44,32),(16,17,45)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)]])

48 conjugacy classes

class 1  2 3A3B···3G4A4B6A6B···6G8A8B8C8D12A12B12C···12N16A···16H24A24B24C24D
order1233···34466···68888121212···1216···1624242424
size1124···41124···49999224···427···2718181818

48 irreducible representations

dim111112222444444
type+++-+-
imageC1C2C4C8C16S3Dic3C3⋊C8C3⋊C16C32⋊C4C322C8C33⋊C4C322C16C334C8C334C16
kernelC334C16C3×C324C8C32×C12C32×C6C33C324C8C3×C12C3×C6C32C12C6C4C3C2C1
# reps112481124224448

Matrix representation of C334C16 in GL4(𝔽97) generated by

35000
06100
00610
00035
,
1000
0100
00350
00061
,
61000
06100
00350
00035
,
0010
0001
0100
22000
G:=sub<GL(4,GF(97))| [35,0,0,0,0,61,0,0,0,0,61,0,0,0,0,35],[1,0,0,0,0,1,0,0,0,0,35,0,0,0,0,61],[61,0,0,0,0,61,0,0,0,0,35,0,0,0,0,35],[0,0,0,22,0,0,1,0,1,0,0,0,0,1,0,0] >;

C334C16 in GAP, Magma, Sage, TeX

C_3^3\rtimes_4C_{16}
% in TeX

G:=Group("C3^3:4C16");
// GroupNames label

G:=SmallGroup(432,413);
// by ID

G=gap.SmallGroup(432,413);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,14,36,58,2804,571,2693,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^16=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^-1,b*c=c*b,d*b*d^-1=a^-1*b^-1,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C334C16 in TeX

׿
×
𝔽